72 research outputs found

    Research on Simulation Inspection Detector

    Get PDF
    AbstractThe structure design problems of simulation inspection detector on ground are researched in this paper. The general design scheme is proposed based on the design task requirements of simulation inspection detector with a synthetic consideration on the requirements of the whole mass and the real grounded force. Detailed design for the concrete mechanical strcture has been carried out. The prototype of simulation inspection detector meets the test requirements, which can also provide important reference for the detector improvemen

    Intelligent Drilling and Coring Technologies for Unmanned Interplanetary Exploration

    Get PDF
    The robotic technology, especially the intelligent robotics that can autonomously conduct numerous dangerous and uncertain tasks, has been widely applied to planetary explorations. Similar to terrestrial mining, before landing on planets or building planetary constructions, a drilling and coring activity should be first conducted to investigate the in-situ geological information. Given the technical advantages of unmanned robotics, utilizing an autonomous drill tool to acquire the planetary soil sample may be the most reliable and cost-effective solution. However, due to several unique challenges existed in unmanned drilling and coring activities, such as long-distance time delay, uncertain drilling formations, limited sensor resources, etc., it is indeed necessary to conduct researches to improve system’s adaptability to the complicated geological formations. Taking drill tool’s power consumption and soil’s coring morphology into account, this chapter proposed a drilling and coring characteristics online monitoring method to investigate suitable drilling parameters for different formations. Meanwhile, by applying pattern recognition techniques to classify different types of potential soil or rocks, a drillability classification model is built accurately to identify the current drilling formation. By combining suitable drilling parameters with the recognized drillability levels, a closed-loop drilling strategy is established finally, which can be applied to future interplanetary exploration

    Multiple Unpinned Dirac Points in Group-Va Single-layers with Phosphorene Structure

    Full text link
    Emergent Dirac fermion states underlie many intriguing properties of graphene, and the search for them constitute one strong motivation to explore two-dimensional (2D) allotropes of other elements. Phosphorene, the ultrathin layers of black phosphorous, has been a subject of intense investigations recently, and it was found that other group-Va elements could also form 2D layers with similar puckered lattice structure. Here, by a close examination of their electronic band structure evolution, we discover two types of Dirac fermion states emerging in the low-energy spectrum. One pair of (type-I) Dirac points is sitting on high-symmetry lines, while two pairs of (type-II) Dirac points are located at generic kk-points, with different anisotropic dispersions determined by the reduced symmetries at their locations. Such fully-unpinned (type-II) 2D Dirac points are discovered for the first time. In the absence of spin-orbit coupling, we find that each Dirac node is protected by the sublattice symmetry from gap opening, which is in turn ensured by any one of three point group symmetries. The spin-orbit coupling generally gaps the Dirac nodes, and for the type-I case, this drives the system into a quantum spin Hall insulator phase. We suggest possible ways to realize the unpinned Dirac points in strained phosphorene.Comment: 30 pages, 6 figure

    Anderson Localization from Berry-Curvature Interchange in Quantum Anomalous Hall System

    Get PDF
    We theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE keeps quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the \textit{interchange} of Berry curvatures carried respectively by the conduction and valence bands. At the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.Comment: 6 pages, 4 figure

    Preclinical Absorption, Distribution, Metabolism, and Excretion of Sodium Danshensu, One of the Main Water-Soluble Ingredients in Salvia miltiorrhiza, in Rats

    Get PDF
    In this study, the absorption, distribution, metabolism and excretion (ADME) of sodium danshensu (Sodium DL-β-(3, 4-dihydroxyphenyl)lactate), one of the main water-soluble active constituents in Salvia miltiorrhiza, were evaluated in rats. Pharmacokinetic study was evaluated in doses of 15, 30, and 60 mg/kg after intravenous administration of sodium danshensu. Bioavailability study was evaluated by comparing between 30 mg/kg (I.V.) and 180 mg/kg (P.O.) of sodium danshensu. Tissue distribution, metabolism, and excretion were evaluated at 30 mg/kg (I.V.) of sodium danshensu. Following intravenous administration, sodium danshensu exhibited linear pharmacokinetics in the dose range of 15–60 mg/kg. Sodium danshensu appeared to be poorly absorbed after oral administration, with an absolute bioavailability of 13.72%. The primary distribution tissue was kidney, but it was also distributed to lung, stomach, muscle, uterus, heart, etc. Within 96 h after intravenous administration, 46.99% was excreted via urine and 1.16% was excreted via feces as the parent drug. Biliary excretion of sodium danshensu was about 0.83% for 24 h. Metabolites in urine were identified as methylation, sulfation, both methylation and sulfation, and acetylation of danshensu. Sodium danshensu can be developed as an injection because of its poor oral bioavailability. In conclusion, sodium danshensu is widely distributed, mainly phase II metabolized and excreted primarily in urine as an unchanged drug in rats
    corecore